Login

Toronto Marlies
GP: 10 | W: 2 | L: 7 | OTL: 1 | P: 5
GF: 51 | GA: 88 | PP%: 20.00% | PK%: 78.79%
GM : Vincent Papale Plamondon | Morale : 40 | Team Overall : 61
Next Games #174 vs Hartford Wolf Pack
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Toronto Marlies
2-7-1, 5pts
6
FINAL
7 Hershey Bears
3-7-1, 7pts
Team Stats
L1StreakOTL1
1-4-0Home Record2-3-0
1-3-1Home Record1-4-1
2-7-1Last 10 Games3-6-1
5.10Goals Per Game4.64
8.80Goals Against Per Game6.18
20.00%Power Play Percentage23.33%
78.79%Penalty Kill Percentage74.19%
Toronto Marlies
2-7-1, 5pts
7
FINAL
16 Chicago Wolves
5-4-1, 11pts
Team Stats
L1StreakW1
1-4-0Home Record3-2-1
1-3-1Home Record2-2-0
2-7-1Last 10 Games5-4-1
5.10Goals Per Game6.00
8.80Goals Against Per Game5.90
20.00%Power Play Percentage21.88%
78.79%Penalty Kill Percentage63.64%
Hartford Wolf Pack
5-5-0, 10pts
Day 25
Toronto Marlies
2-7-1, 5pts
Team Stats
W1StreakL1
2-4-0Home Record1-4-0
3-1-0Away Record1-3-1
5-5-0Last 10 Games2-7-1
4.00Goals Per Game5.10
5.10Goals Against Per Game5.10
22.22%Power Play Percentage20.00%
71.43%Penalty Kill Percentage78.79%
Toronto Marlies
2-7-1, 5pts
Day 27
Ontario Reign
5-6-1, 11pts
Team Stats
L1StreakL1
1-4-0Home Record3-2-0
1-3-1Away Record2-4-1
2-7-1Last 10 Games4-5-1
5.10Goals Per Game4.00
8.80Goals Against Per Game4.00
20.00%Power Play Percentage12.50%
78.79%Penalty Kill Percentage76.09%
Scranton Penguins
3-7-0, 6pts
Day 29
Toronto Marlies
2-7-1, 5pts
Team Stats
L5StreakL1
3-2-0Home Record1-4-0
0-5-0Away Record1-3-1
3-7-0Last 10 Games2-7-1
3.80Goals Per Game5.10
6.40Goals Against Per Game5.10
24.32%Power Play Percentage20.00%
58.06%Penalty Kill Percentage78.79%
Team Leaders
Goals
Ryan Carpenter
8
Assists
Ryan Carpenter
15
Points
Ryan Carpenter
23
Plus/Minus
James Hamblin
0
Wins
Jakub Skarek
2
Save Percentage
Jakub Skarek
0.752

Team Stats
Goals For
51
5.10 GFG
Shots For
340
34.00 Avg
Power Play Percentage
20.0%
6 GF
Offensive Zone Start
35.3%
Goals Against
88
8.80 GAA
Shots Against
317
31.70 Avg
Penalty Kill Percentage
78.8%%
7 GA
Defensive Zone Start
28.9%
Team Info

General ManagerVincent Papale Plamondon
CoachGeorges Laraque
DivisionPacific Division
ConferenceWestern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,882
Season Tickets300


Roster Info

Pro Team20
Farm Team18
Contract Limit38 / 50
Prospects6


Team History

This Season2-7-1 (5PTS)
History22-69-4 (0.232%)
Playoff Appearances2
Playoff Record (W-L)0-0
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Ryan CarpenterXX100.00795090737682835282747175846267040660312775,000$
2Givani SmithXX100.00795073727278815035727272855260040640244800,000$
3Damien GirouxX100.00785085727084605070707072795060040630221820,000$
4Tim GettingerXX100.00795095707279625035707074795060040630242775,000$
5Bryce KindoppX100.00605095707176605035707072795060040620231925,000$
6James HamblinX100.00625093707179635135707070795060040620232810,000$
7Ivan Lodnia (R)X100.00675074657083885635656560675060040600231750,000$
8J.C. BeaudinXXX100.00863690627769736368616062636764040600251750,000$
9Evan BarrattX100.00664878637283785971605956586362040580231870,000$
10Cole CasselsX100.00624878597182845868625756557165040570271750,000$
11Shane GersichX100.00614575597083885768565860576968040570261750,000$
12Evan PoleiX100.00807256558961765557545659536965040560261775,000$
13Nikita OkhotiukX100.00915092737483645035727474975060040670222800,000$
14Maxime LajoieX100.00665095707481625435707076795060040650252775,000$
15Chris BigrasX100.00674284627679845930605458537166040590271700,000$
16Eemil Viro (R)X100.00565078636973825435595764675060040580202850,000$
17Colton PoolmanX100.00653591567467725430575355467166040550272775,000$
18Mitch EliotX100.00633672557276815630545253466563040550242775,000$
Scratches
TEAM AVERAGE100.0070488365737875544764636568596304060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Kevin Poulin100.0069717782686769686769687985040670321750,000$
2Jakub Skarek100.0067787683666567666567666367040660234775,000$
Scratches
TEAM AVERAGE100.006875778367666867666867717604067
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Georges Laraque75757575757575CAN5111$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ryan CarpenterToronto Marlies (TOR)C/RW1081523-36013253652422.22%620520.5721312250111241069.81%212185002.2400000100
2Givani SmithToronto Marlies (TOR)LW/RW1071017-580331028101225.00%720520.511236250000240038.46%13198011.6600000003
3Tim GettingerToronto Marlies (TOR)LW/RW1051015000181946122910.87%1019919.931129260112260036.36%111510001.5100000010
4James HamblinToronto Marlies (TOR)LW107714000121038122618.42%716816.81033926000001133.33%3185011.6700000100
5Nikita OkhotiukToronto Marlies (TOR)D105914-94020132013725.00%1020620.6911212700000000%0209001.3500000000
6Bryce KindoppToronto Marlies (TOR)RW105813-3003829101517.24%818218.23022525000040018.18%1194001.4300000020
7Maxime LajoieToronto Marlies (TOR)D106511-90011301210850.00%1624024.04000227101130000%0616000.9200000000
8Evan BarrattToronto Marlies (TOR)C101780120173117129.09%016816.89011226000000058.90%16310000.9500000000
9J.C. BeaudinToronto Marlies (TOR)C/LW/RW10246-2000108175911.76%211311.37000000002280063.89%3694001.0600000000
10Damien GirouxToronto Marlies (TOR)C10224-1300199243108.33%410910.9800000000000058.82%68158000.7300000000
11Eemil ViroToronto Marlies (TOR)D10134-48010718535.56%2023023.08101523000022000%0213000.3500000000
12Chris BigrasToronto Marlies (TOR)D10033-6201385140%1423923.95011123000027000%0012000.2500000000
13Ivan LodniaToronto Marlies (TOR)RW10112-1360106197155.26%111111.1100000000000022.22%9111000.3600000000
14Cole CasselsToronto Marlies (TOR)C10011-18004614380%3838.3400000000010052.08%4881000.2400000000
15Colton PoolmanToronto Marlies (TOR)D10011-2220236340%915515.5700000000026000%009000.1300000000
16Evan PoleiToronto Marlies (TOR)LW10101-1812013842025.00%2848.450000000001000%100000.2400000000
17Shane GersichToronto Marlies (TOR)LW10011-1440848040%211011.030000000000000%102000.1800000000
18Mitch EliotToronto Marlies (TOR)D10000-2220435320%412912.950000000015000%00100000000000
Team Total or Average1805187138-17966022018034011119215.00%125294416.36612185225512372222160.07%576151108020.9400000233
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jakub SkarekToronto Marlies (TOR)102410.7528.3350400702821480000100000
2Kevin PoulinToronto Marlies (TOR)50300.48611.2596001835130000010000
Team Total or Average152710.7228.8060000883171610001010000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Waiver Possible Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Bryce KindoppToronto Marlies (TOR)RW231999-06-14No185 Lbs6 ft1NoNoNoNo1Pro & Farm925,000$0$0$NoLink
Chris BigrasToronto Marlies (TOR)D271995-02-22No191 Lbs6 ft1NoNoNoNo1Pro & Farm700,000$0$0$NoLink
Cole CasselsToronto Marlies (TOR)C271995-05-04No180 Lbs6 ft0NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Colton PoolmanToronto Marlies (TOR)D271995-12-18No200 Lbs6 ft0NoNoNoNo2Pro & Farm775,000$0$0$No775,000$Link
Damien GirouxToronto Marlies (TOR)C222000-03-03No179 Lbs5 ft11NoNoNoNo1Pro & Farm820,000$0$0$NoLink
Eemil ViroToronto Marlies (TOR)D202002-04-03 08:32:29Yes165 Lbs6 ft0NoNoNoNo2Pro & Farm850,000$0$0$No850,000$
Evan BarrattToronto Marlies (TOR)C231999-02-18No188 Lbs6 ft0NoNoNoNo1Pro & Farm870,000$0$0$NoLink
Evan PoleiToronto Marlies (TOR)LW261996-02-19No270 Lbs6 ft2NoNoNoNo1Pro & Farm775,000$0$0$NoLink
Givani SmithToronto Marlies (TOR)LW/RW241998-02-27No210 Lbs6 ft2NoNoNoNo4Pro & Farm800,000$0$0$No800,000$800,000$800,000$Link
Ivan LodniaToronto Marlies (TOR)RW231999-08-31 08:40:28Yes185 Lbs5 ft10NoNoNoNo1Pro & Farm750,000$0$0$No
J.C. BeaudinToronto Marlies (TOR)C/LW/RW251997-03-25No196 Lbs6 ft1NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Jakub SkarekToronto Marlies (TOR)G231999-11-10No196 Lbs6 ft3NoNoNoNo4Pro & Farm775,000$0$0$No775,000$775,000$775,000$Link
James HamblinToronto Marlies (TOR)LW231999-04-27No176 Lbs5 ft9NoNoNoNo2Pro & Farm810,000$0$0$No810,000$Link
Kevin PoulinToronto Marlies (TOR)G321990-04-12No206 Lbs6 ft2NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Maxime LajoieToronto Marlies (TOR)D251997-11-05No196 Lbs6 ft1NoNoNoNo2Pro & Farm775,000$0$0$No775,000$Link
Mitch EliotToronto Marlies (TOR)D241998-02-06No190 Lbs6 ft0NoNoNoNo2Pro & Farm775,000$0$0$No775,000$Link
Nikita OkhotiukToronto Marlies (TOR)D222000-12-04No197 Lbs6 ft1NoNoNoNo2Pro & Farm800,000$0$0$No800,000$Link
Ryan CarpenterToronto Marlies (TOR)C/RW311991-01-18No200 Lbs6 ft0NoNoNoNo2Pro & Farm775,000$0$0$No775,000$Link
Shane GersichToronto Marlies (TOR)LW261996-07-10No180 Lbs6 ft0NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Tim GettingerToronto Marlies (TOR)LW/RW241998-04-14No218 Lbs6 ft6NoNoNoNo2Pro & Farm775,000$0$0$No775,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2024.85195 Lbs6 ft11.70787,500$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Givani SmithRyan CarpenterBryce Kindopp40005
2James HamblinEvan BarrattTim Gettinger35005
3Shane GersichDamien GirouxIvan Lodnia15005
4Evan PoleiCole CasselsJ.C. Beaudin10005
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Maxime LajoieNikita Okhotiuk40005
2Eemil ViroChris Bigras40005
3Mitch EliotColton Poolman20005
4Colton PoolmanMitch Eliot0005
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Givani SmithRyan CarpenterBryce Kindopp50005
2James HamblinEvan BarrattTim Gettinger50005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Maxime LajoieNikita Okhotiuk50005
2Eemil ViroChris Bigras50005
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1J.C. BeaudinGivani Smith50050
2Ryan CarpenterTim Gettinger50050
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Chris BigrasColton Poolman50050
2Eemil ViroMaxime Lajoie50050
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1J.C. Beaudin50050Chris BigrasColton Poolman50050
2Ryan Carpenter50050Eemil ViroMaxime Lajoie50050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1J.C. BeaudinGivani Smith50005
2Ryan CarpenterTim Gettinger50005
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Chris BigrasColton Poolman50005
2Eemil ViroMaxime Lajoie50005
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Givani SmithJ.C. BeaudinBryce KindoppChris BigrasColton Poolman
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Givani SmithJ.C. BeaudinBryce KindoppChris BigrasColton Poolman
Extra Forwards
Normal PowerPlayPenalty Kill
Bryce Kindopp, Ivan Lodnia, Evan PoleiBryce Kindopp, Ivan LodniaBryce Kindopp
Extra Defensemen
Normal PowerPlayPenalty Kill
Maxime Lajoie, Mitch Eliot, Nikita OkhotiukMaxime LajoieMaxime Lajoie, Mitch Eliot
Penalty Shots
J.C. Beaudin, Givani Smith, Tim Gettinger, Ryan Carpenter, Bryce Kindopp
Goalie
#1 : Jakub Skarek, #2 : Kevin Poulin
Custom OT Lines Forwards
J.C. Beaudin, Givani Smith, Tim Gettinger, Ryan Carpenter, Bryce Kindopp, Ivan Lodnia, Ivan Lodnia, Evan Polei, James Hamblin, Shane Gersich, Cole Cassels
Custom OT Lines Defensemen
Chris Bigras, Colton Poolman, Eemil Viro, Maxime Lajoie, Mitch Eliot


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Charlotte Checkers1010000049-5000000000001010000049-500.00047110020181303511512798026141023300.00%5340.00%012020359.11%9216655.42%13420665.05%2181412307815173
2Chicago Wolves10100000716-90000000000010100000716-900.000712190020181303511512798032116244250.00%30100.00%012020359.11%9216655.42%13420665.05%2181412307815173
3Hershey Bears210001001513200000000000210001001513230.75015264100201813067115127980582812422150.00%6183.33%112020359.11%9216655.42%13420665.05%2181412307815173
4Iowa Wild1010000046-21010000046-20000000000000.000471100201813033115127980287224300.00%10100.00%012020359.11%9216655.42%13420665.05%2181412307815173
5Laval Rockets10100000412-80000000000010100000412-800.0004610002018130391151279803215629400.00%30100.00%012020359.11%9216655.42%13420665.05%2181412307815173
6Manitoba Moose20200000414-1020200000414-100000000000000.00046100020181306011512798068302235400.00%11281.82%012020359.11%9216655.42%13420665.05%2181412307815173
7Milwaukee Admirals1100000011741100000011740000000000021.000111930002018130391151279803296257342.86%3166.67%012020359.11%9216655.42%13420665.05%2181412307815173
8Providence Bruins10100000211-910100000211-90000000000000.000246002018130321151279804111218300.00%10100.00%012020359.11%9216655.42%13420665.05%2181412307815173
Total1027001005188-37514000002138-17513001003050-2050.25051871380020181303401151279803171256622030620.00%33778.79%112020359.11%9216655.42%13420665.05%2181412307815173
_Since Last GM Reset1027001005188-37514000002138-17513001003050-2050.25051871380020181303401151279803171256622030620.00%33778.79%112020359.11%9216655.42%13420665.05%2181412307815173
_Vs Conference30300000820-1230300000820-120000000000000.000813210020181309311512798096372459700.00%12283.33%012020359.11%9216655.42%13420665.05%2181412307815173

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
105L151871383403171256622000
All Games
GPWLOTWOTL SOWSOLGFGA
102701005188
Home Games
GPWLOTWOTL SOWSOLGFGA
51400002138
Visitor Games
GPWLOTWOTL SOWSOLGFGA
51301003050
Last 10 Games
WLOTWOTL SOWSOL
270100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
30620.00%33778.79%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
1151279802018130
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
12020359.11%9216655.42%13420665.05%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2181412307815173


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
210Toronto Marlies9Hershey Bears6AWBoxScore
423Toronto Marlies4Laval Rockets12ALBoxScore
530Manitoba Moose7Toronto Marlies4BLBoxScore
753Milwaukee Admirals7Toronto Marlies11BWBoxScore
1076Manitoba Moose7Toronto Marlies0BLBoxScore
1286Toronto Marlies4Charlotte Checkers9ALBoxScore
15107Providence Bruins11Toronto Marlies2BLBoxScore
19132Iowa Wild6Toronto Marlies4BLBoxScore
21147Toronto Marlies6Hershey Bears7ALXBoxScore
23164Toronto Marlies7Chicago Wolves16ALBoxScore
25174Hartford Wolf Pack-Toronto Marlies-
27191Toronto Marlies-Ontario Reign-
29200Scranton Penguins-Toronto Marlies-
31214Toronto Marlies-Grand Rapids Griffins-
33232Toronto Marlies-Bellerive Senators-
35244Rockford IceDogs-Toronto Marlies-
37253Toronto Marlies-Syracuse Crunch-
39274Toronto Marlies-Hershey Bears-
40282Scranton Penguins-Toronto Marlies-
43303Toronto Marlies-Bellerive Senators-
45316Iowa Wild-Toronto Marlies-
47334Toronto Marlies-Manitoba Moose-
49343Toronto Marlies-Coachella Valley Firebirds-
50351Tucson Roadrunners-Toronto Marlies-
53374Toronto Marlies-Tucson Roadrunners-
54383Grand Rapids Griffins-Toronto Marlies-
58409Toronto Marlies-Grand Rapids Griffins-
59416Bellerive Senators-Toronto Marlies-
62439Bridgeport Islanders-Toronto Marlies-
65465Providence Bruins-Toronto Marlies-
67476Toronto Marlies-Iowa Wild-
69494Toronto Marlies-Chicago Wolves-
71505San Diego Gulls-Toronto Marlies-
75531Charlotte Checkers-Toronto Marlies-
79553Toronto Marlies-Bridgeport Islanders-
80565Utica Comets-Toronto Marlies-
83584Toronto Marlies-Colorado Eagles-
85596Rockford IceDogs-Toronto Marlies-
88616Toronto Marlies-Syracuse Crunch-
89626Hershey Bears-Toronto Marlies-
93653Milwaukee Admirals-Toronto Marlies-
95669Toronto Marlies-Scranton Penguins-
97685Bridgeport Islanders-Toronto Marlies-
99700Toronto Marlies-Providence Bruins-
102718Cleveland Monsters-Toronto Marlies-
106746Stockton Heat-Toronto Marlies-
109765Toronto Marlies-Tucson Roadrunners-
110778Henderson Silver Knights-Toronto Marlies-
112795Toronto Marlies-Ontario Reign-
114809Springfield Thunderbirds-Toronto Marlies-
116828Toronto Marlies-Utica Comets-
117839Laval Rockets-Toronto Marlies-
120854Toronto Marlies-Texas Stars-
123874Rochester Americans-Toronto Marlies-
126897Toronto Marlies-Coachella Valley Firebirds-
127905Texas Stars-Toronto Marlies-
130921Toronto Marlies-Rochester Americans-
132936Toronto Marlies-Lehigh Valley Phantoms-
133943Ontario Reign-Toronto Marlies-
136968Abbotsford Canucks-Toronto Marlies-
138979Toronto Marlies-Bakersfield Condors-
1421001Chicago Wolves-Toronto Marlies-
1441017Toronto Marlies-Milwaukee Admirals-
1461029Toronto Marlies-Hartford Wolf Pack-
1471038Colorado Eagles-Toronto Marlies-
1511066Rochester Americans-Toronto Marlies-
1541087Toronto Marlies-Rochester Americans-
1551098Colorado Eagles-Toronto Marlies-
Trade Deadline --- Trades can’t be done after this day is simulated!
1571115Toronto Marlies-Utica Comets-
1601130Lehigh Valley Phantoms-Toronto Marlies-
1621145Toronto Marlies-Springfield Thunderbirds-
1631158Toronto Marlies-Laval Rockets-
1651168Manitoba Moose-Toronto Marlies-
1681188Hartford Wolf Pack-Toronto Marlies-
1711206Toronto Marlies-Rockford IceDogs-
1731222Coachella Valley Firebirds-Toronto Marlies-
1761240Toronto Marlies-Charlotte Checkers-
1781254Syracuse Crunch-Toronto Marlies-
1791265Toronto Marlies-San Jose Barracuda-
1811277Toronto Marlies-Springfield Thunderbirds-
1831289Lehigh Valley Phantoms-Toronto Marlies-
1841294Toronto Marlies-Texas Stars-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance9,7624,650
Attendance PCT97.62%93.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
36 2882 - 96.08% 41,965$209,824$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,010,648$ 15,750,000$ 850,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 2,010,648$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,510,733$ 164 83,777$ 13,739,428$




Toronto Marlies Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Givani Smith927794171-717819012635321.81%50180119.581615314700002235.71%51.9000
2Andy Welinski827157128-10629022027925.45%196200924.50221032511019320%41.2700
3Tim Gettinger925562117-86816115637014.86%51181219.701015255721384031.18%11.2900
4Mason Shaw824168109-53541459825616.02%28137716.80000000003124.10%41.5800
5Maxime Lajoie926145106-5465416626622.93%114158017.18191332861012200%31.3400

Toronto Marlies Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Jakub Skarek92214110.7627.384449405472296121315000
2Kevin Poulin5612800.58911.831075002125162250000

Toronto Marlies Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
482166204000412671-2594192804000224299-754173400000188372-1844041267610880014413113342768101288885711249587859217152669033.83%29611561.15%4874164953.00%635130548.66%837164051.04%1790114118586541281619
51027001005188-37514000002138-17513001003050-20551871380020181303401151279803171256622030620.00%33778.79%112020359.11%9216655.42%13420665.05%2181412307815173
Total Regular Season92186904100463759-29646103204000245337-924683700100218422-204454637631226001641491464310811271015955112812100365819352969632.43%32912262.92%5994185253.67%727147149.42%971184652.60%2008128220887331433693
Playoff
Total Playoff0000000000000000000000000000000000000000000000000000000%000%0000%000%000%000000

Toronto Marlies Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Toronto Marlies Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA