Login

Chicago Wolves
GP: 10 | W: 5 | L: 4 | OTL: 1 | P: 11
GF: 60 | GA: 59 | PP%: 21.88% | PK%: 63.64%
GM : Alain Bosch | Morale : 40 | Team Overall : 62
Next Games #189 vs Milwaukee Admirals
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Cleveland Monsters
9-1-0, 18pts
4
FINAL
3 Chicago Wolves
5-4-1, 11pts
Team Stats
W4StreakW1
4-1-0Home Record3-2-1
5-0-0Home Record2-2-0
9-1-0Last 10 Games5-4-1
5.60Goals Per Game6.00
3.30Goals Against Per Game5.90
39.13%Power Play Percentage21.88%
72.73%Penalty Kill Percentage63.64%
Toronto Marlies
2-7-1, 5pts
7
FINAL
16 Chicago Wolves
5-4-1, 11pts
Team Stats
L1StreakW1
1-4-0Home Record3-2-1
1-3-1Home Record2-2-0
2-7-1Last 10 Games5-4-1
5.10Goals Per Game6.00
8.80Goals Against Per Game5.90
20.00%Power Play Percentage21.88%
78.79%Penalty Kill Percentage63.64%
Chicago Wolves
5-4-1, 11pts
Day 27
Milwaukee Admirals
2-9-0, 4pts
Team Stats
W1StreakW1
3-2-1Home Record2-3-0
2-2-0Away Record0-6-0
5-4-1Last 10 Games2-8-0
6.00Goals Per Game5.00
5.90Goals Against Per Game5.00
21.88%Power Play Percentage21.43%
63.64%Penalty Kill Percentage63.16%
Syracuse Crunch
0-11-0, 0pts
Day 29
Chicago Wolves
5-4-1, 11pts
Team Stats
L11StreakW1
0-5-0Home Record3-2-1
0-6-0Away Record2-2-0
0-10-0Last 10 Games5-4-1
2.36Goals Per Game6.00
6.91Goals Against Per Game6.00
14.81%Power Play Percentage21.88%
44.44%Penalty Kill Percentage63.64%
Chicago Wolves
5-4-1, 11pts
Day 31
San Jose Barracuda
8-3-1, 17pts
Team Stats
W1StreakW1
3-2-1Home Record3-1-1
2-2-0Away Record5-2-0
5-4-1Last 10 Games8-2-0
6.00Goals Per Game5.50
5.90Goals Against Per Game5.50
21.88%Power Play Percentage25.00%
63.64%Penalty Kill Percentage74.29%
Team Leaders
Goals
Brendan Perlini
12
Assists
Andrew Agozzino
15
Points
Brendan Perlini
23
Plus/Minus
Mark Friedman
9
Wins
Zachary Emond
5
Save Percentage
Zachary Emond
0.819

Team Stats
Goals For
60
6.00 GFG
Shots For
280
28.00 Avg
Power Play Percentage
21.9%
7 GF
Offensive Zone Start
32.2%
Goals Against
59
5.90 GAA
Shots Against
287
28.70 Avg
Penalty Kill Percentage
63.6%%
12 GA
Defensive Zone Start
31.4%
Team Info

General ManagerAlain Bosch
DivisionNorth Division
ConferenceEastern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,746
Season Tickets300


Roster Info

Pro Team20
Farm Team18
Contract Limit38 / 50
Prospects7


Team History

This Season5-4-1 (11PTS)
History14-75-1 (0.156%)
Playoff Appearances2
Playoff Record (W-L)0-0
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Craig SmithXX100.0072509276758396585976767388867604068N03321,250,000$
2Sheldon DriesXX100.00735091747481796379737674915560040670282762,500$
3Zach SanfordXXX100.00805089747484855974747574886066040670282775,000$
4Andrew AgozzinoX100.00855095727881715079737074795260040650322775,000$
5Brendan PerliniXX100.00735092747278665135717671965060040640261750,000$
6Sheldon RempalX100.00605095706879715035707072795260040620272765,000$
7Brett SutterX100.00654680597487925771585659558479040580351750,000$
8Carson GicewiczX100.00765472598673755671575558566763040570253900,000$
9Ryan McGregorX100.00593583586882865766625659576362040570232775,000$
10Nathan ToddX100.00613888577079775876595756597166040560271775,000$
11Spencer SmallmanXX100.00684383577779845860565357546964040560262762,500$
12Tanner FritzX100.00624383547166715456545655597873040530311750,000$
13Mark FriedmanX100.00765087737784735035747179825160040680272775,000$
14Jon LizotteX100.00905075707085705035707072735060040650281750,000$
15Aaron NessX100.00805095706083705035707072795460040640321750,000$
16Frederic AllardX100.00605095707683615035707077785060040640251750,000$
17Dylan BlujusX100.00735276568277725530535457467367040570281750,000$
18Chaz ReddekoppX100.00787357528771755330515056456763040560262750,000$
Scratches
TEAM AVERAGE100.0072498565748076545365656670636404061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Zachary Emond (R)100.0075707082757877807482835060040730251750,000$
2Antoine Bibeau100.0068747284676668676668677377040670281750,000$
Scratches
TEAM AVERAGE100.007272718371727374707575626904070
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brendan PerliniChicago Wolves (CAR)LW/RW1012112380071941152129.27%219419.494151028000021016.67%6322002.3600000211
2Sheldon DriesChicago Wolves (CAR)C/LW1012921600101442143028.57%718618.62202825000003059.82%112224022.2600000012
3Andrew AgozzinoChicago Wolves (CAR)LW103151832018162091615.00%923723.740443270000210027.27%11187001.5200000101
4Sheldon RempalChicago Wolves (CAR)RW106915-40062337161616.22%223223.250001230001221034.69%98228011.2900000110
5Zach SanfordChicago Wolves (CAR)C/LW/RW10961532018524101137.50%313713.7400000000000083.33%6214022.1800000111
6Craig SmithChicago Wolves (CAR)C/RW1049130006928141814.29%316516.60022325000000045.13%113193001.5700000001
7Aaron NessChicago Wolves (CAR)D105611-700515148435.71%2325225.25101224101135000%01012010.8700000010
8Mark FriedmanChicago Wolves (CAR)D107411900614147450.00%1415715.700000000000000%046001.4000000100
9Frederic AllardChicago Wolves (CAR)D10167500717177115.88%1720320.31022429000024000%0810000.6900000000
10Brett SutterChicago Wolves (CAR)C1005561001457120%219319.40022129000060067.50%4014000.5200000010
11Carson GicewiczChicago Wolves (CAR)C1005506017104250%313413.4000000000000047.06%8562000.7500000000
12Jon LizotteChicago Wolves (CAR)D1005594011108130%615615.630000000000000%096000.6400000000
13Chaz ReddekoppChicago Wolves (CAR)D10033-81602254220%723623.67000024000019000%009000.2500000000
14Dylan BlujusChicago Wolves (CAR)D10112580191311349.09%719919.94000229000018000%004000.2000000000
15Ryan McGregorChicago Wolves (CAR)C10022-1100468550%016116.19000000110210050.00%3005000.2500000000
16Spencer SmallmanChicago Wolves (CAR)LW/RW10011-31951041110%510210.24000030111220042.86%703000.2000000000
17Nathan ToddChicago Wolves (CAR)C10000000000000%000.060000000000000%00000000000000
18Tanner FritzChicago Wolves (CAR)RW10000000000000%000.060000000000000%00000000000000
Team Total or Average18060971573177518018528011515321.43%110295216.40711183427312331945048.43%50817289061.0600000666
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Zachary EmondChicago Wolves (CAR)105410.8195.1156400482651441000100000
2Antoine BibeauChicago Wolves (CAR)20000.50018.333600112280000010000
Team Total or Average125410.7945.9060000592871521001010000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Waiver Possible Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aaron NessChicago Wolves (CAR)D321990-05-18No184 Lbs5 ft10NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Andrew AgozzinoChicago Wolves (CAR)LW321991-01-03No187 Lbs5 ft10NoNoNoNo2Pro & Farm775,000$0$0$No775,000$Link
Antoine BibeauChicago Wolves (CAR)G281994-05-01No205 Lbs6 ft3NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Brendan PerliniChicago Wolves (CAR)LW/RW261996-04-27No211 Lbs6 ft3NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Brett SutterChicago Wolves (CAR)C351987-06-02No200 Lbs6 ft0NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Carson GicewiczChicago Wolves (CAR)C251997-03-04No212 Lbs6 ft3NoNoNoNo3Pro & Farm900,000$0$0$No900,000$900,000$Link
Chaz ReddekoppChicago Wolves (CAR)D261997-01-01No219 Lbs6 ft3NoNoNoNo2Pro & Farm750,000$0$0$No750,000$Link
Craig SmithChicago Wolves (CAR)C/RW331989-09-05No206 Lbs6 ft0YesNoNoNo2Pro & Farm1,250,000$0$0$No1,250,000$Link
Dylan BlujusChicago Wolves (CAR)D281994-01-22No191 Lbs6 ft3NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Frederic AllardChicago Wolves (CAR)D251997-12-27No179 Lbs6 ft1NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Jon LizotteChicago Wolves (CAR)D281994-11-10No216 Lbs6 ft1NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Mark FriedmanChicago Wolves (CAR)D271995-12-25No185 Lbs5 ft11NoNoNoNo2Pro & Farm775,000$0$0$No775,000$Link
Nathan ToddChicago Wolves (CAR)C271995-12-02No176 Lbs6 ft0NoNoNoNo1Pro & Farm775,000$0$0$NoLink
Ryan McGregorChicago Wolves (CAR)C231999-01-29No168 Lbs6 ft0NoNoNoNo2Pro & Farm775,000$0$0$No775,000$Link
Sheldon DriesChicago Wolves (CAR)C/LW281994-04-23No180 Lbs5 ft9NoNoNoNo2Pro & Farm762,500$0$0$No762,500$Link
Sheldon RempalChicago Wolves (CAR)RW271995-08-07No165 Lbs5 ft10NoNoNoNo2Pro & Farm765,000$0$0$No765,000$Link
Spencer SmallmanChicago Wolves (CAR)LW/RW261996-09-09No198 Lbs6 ft1NoNoNoNo2Pro & Farm762,500$0$0$No762,500$Link
Tanner FritzChicago Wolves (CAR)RW311991-08-20No192 Lbs5 ft11NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Zach SanfordChicago Wolves (CAR)C/LW/RW281994-11-09No207 Lbs6 ft4NoNoNoNo2Pro & Farm775,000$0$0$No775,000$Link
Zachary EmondChicago Wolves (CAR)G251997-06-01 07:30:41Yes165 Lbs6 ft3NoNoNoNo1Pro & Farm750,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2028.00192 Lbs6 ft11.55790,750$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Andrew AgozzinoCraig SmithZach Sanford25122
2Brendan PerliniSheldon DriesBrett Sutter25122
3Ryan McGregorCarson GicewiczSheldon Rempal25122
4Andrew AgozzinoSheldon RempalSpencer Smallman25122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark FriedmanJon Lizotte25122
2Chaz ReddekoppAaron Ness25122
3Frederic AllardDylan Blujus25122
4Chaz ReddekoppAaron Ness25122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Sheldon RempalCraig SmithSheldon Dries50122
2Andrew AgozzinoBrett SutterBrendan Perlini50122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Frederic AllardDylan Blujus50122
2Chaz ReddekoppAaron Ness50122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Sheldon RempalAndrew Agozzino50122
2Ryan McGregorSpencer Smallman50122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Frederic AllardAaron Ness50122
2Chaz ReddekoppDylan Blujus50122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Sheldon Rempal50122Aaron NessFrederic Allard50122
2Andrew Agozzino50122Chaz ReddekoppMark Friedman50122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Sheldon RempalZach Sanford50122
2Andrew AgozzinoCraig Smith50122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Frederic AllardDylan Blujus50122
2Chaz ReddekoppAaron Ness50122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Zach SanfordCraig SmithSheldon DriesMark FriedmanJon Lizotte
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Zach SanfordCraig SmithSheldon DriesMark FriedmanJon Lizotte
Extra Forwards
Normal PowerPlayPenalty Kill
Sheldon Rempal, Brett Sutter, Ryan McGregorSheldon Rempal, Spencer SmallmanSheldon Rempal
Extra Defensemen
Normal PowerPlayPenalty Kill
Chaz Reddekopp, Aaron Ness, Frederic AllardChaz ReddekoppDylan Blujus, Chaz Reddekopp
Penalty Shots
Brett Sutter, Ryan McGregor, Spencer Smallman, Carson Gicewicz, Sheldon Rempal
Goalie
#1 : Zachary Emond, #2 : Antoine Bibeau
Custom OT Lines Forwards
Brett Sutter, Ryan McGregor, Spencer Smallman, Sheldon Dries, Sheldon Rempal, Zach Sanford, Zach Sanford, Craig Smith, Andrew Agozzino, Brendan Perlini, Carson Gicewicz
Custom OT Lines Defensemen
Aaron Ness, Frederic Allard, Chaz Reddekopp, Dylan Blujus, Jon Lizotte


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Charlotte Checkers11000000963110000009630000000000021.00091625002723100271097892130610233133.33%50100.00%18616352.76%7115944.65%8918448.37%2191382198016279
2Cleveland Monsters1010000034-11010000034-10000000000000.0003470027231003110978921211415100.00%20100.00%08616352.76%7115944.65%8918448.37%2191382198016279
3Coachella Valley Firebirds1010000034-11010000034-10000000000000.00034700272310025109789212411021200.00%000%08616352.76%7115944.65%8918448.37%2191382198016279
4Grand Rapids Griffins11000000642110000006420000000000021.000610160027231002710978921231312202150.00%6266.67%08616352.76%7115944.65%8918448.37%2191382198016279
5Henderson Silver Knights1100000010550000000000011000000105521.0001015250027231002610978921302219213133.33%4250.00%08616352.76%7115944.65%8918448.37%2191382198016279
6Ontario Reign1000010045-11000010045-10000000000010.5004812002723100341097892130116237114.29%30100.00%08616352.76%7115944.65%8918448.37%2191382198016279
7Providence Bruins10100000211-90000000000010100000211-900.00023500272310023109789213414617400.00%3233.33%08616352.76%7115944.65%8918448.37%2191382198016279
8Texas Stars11000000321000000000001100000032121.00035800272310025109789212284144250.00%2150.00%08616352.76%7115944.65%8918448.37%2191382198016279
9Toronto Marlies1100000016791100000016790000000000021.0001625410027231003210978921358816300.00%4250.00%08616352.76%7115944.65%8918448.37%2191382198016279
10Tucson Roadrunners10100000411-70000000000010100000411-700.0004711002723100301097892138168103133.33%4325.00%08616352.76%7115944.65%8918448.37%2191382198016279
Total1054001006059163200100413011422000001929-10110.5506097157002723100280109789212871107718032721.88%331263.64%18616352.76%7115944.65%8918448.37%2191382198016279
_Since Last GM Reset1054001006059163200100413011422000001929-10110.5506097157002723100280109789212871107718032721.88%331263.64%18616352.76%7115944.65%8918448.37%2191382198016279
_Vs Conference532000002327-4321000001814421100000513-860.6002338610027231001271097892113352329515426.67%16568.75%18616352.76%7115944.65%8918448.37%2191382198016279
_Vs Division1000000034-11000000034-10000000000000.0003470027231003110978921211415100.00%20100.00%08616352.76%7115944.65%8918448.37%2191382198016279

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1011W160971572802871107718000
All Games
GPWLOTWOTL SOWSOLGFGA
105401006059
Home Games
GPWLOTWOTL SOWSOLGFGA
63201004130
Visitor Games
GPWLOTWOTL SOWSOLGFGA
42200001929
Last 10 Games
WLOTWOTL SOWSOL
540100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
32721.88%331263.64%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
109789212723100
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
8616352.76%7115944.65%8918448.37%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2191382198016279


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
28Chicago Wolves4Tucson Roadrunners11ALBoxScore
424Charlotte Checkers6Chicago Wolves9BWBoxScore
645Chicago Wolves2Providence Bruins11ALBoxScore
751Coachella Valley Firebirds4Chicago Wolves3BLBoxScore
969Grand Rapids Griffins4Chicago Wolves6BWBoxScore
1499Ontario Reign5Chicago Wolves4BLXBoxScore
16115Chicago Wolves3Texas Stars2AWBoxScore
18127Chicago Wolves10Henderson Silver Knights5AWBoxScore
20143Cleveland Monsters4Chicago Wolves3BLBoxScore
23164Toronto Marlies7Chicago Wolves16BWBoxScore
27189Chicago Wolves-Milwaukee Admirals-
29199Syracuse Crunch-Chicago Wolves-
31215Chicago Wolves-San Jose Barracuda-
33228Chicago Wolves-San Diego Gulls-
34240Rochester Americans-Chicago Wolves-
36251Chicago Wolves-Iowa Wild-
38269Syracuse Crunch-Chicago Wolves-
41291Grand Rapids Griffins-Chicago Wolves-
43304Chicago Wolves-Syracuse Crunch-
45314Chicago Wolves-Grand Rapids Griffins-
47331San Diego Gulls-Chicago Wolves-
50357Charlotte Checkers-Chicago Wolves-
52366Chicago Wolves-Cleveland Monsters-
55392Hershey Bears-Chicago Wolves-
57403Chicago Wolves-Texas Stars-
59419Chicago Wolves-San Jose Barracuda-
60427Charlotte Checkers-Chicago Wolves-
63455Springfield Thunderbirds-Chicago Wolves-
65464Chicago Wolves-Laval Rockets-
68484Chicago Wolves-Hartford Wolf Pack-
69494Toronto Marlies-Chicago Wolves-
72508Chicago Wolves-Scranton Penguins-
74524Cleveland Monsters-Chicago Wolves-
78550Henderson Silver Knights-Chicago Wolves-
80559Chicago Wolves-Springfield Thunderbirds-
83585San Jose Barracuda-Chicago Wolves-
86604Chicago Wolves-Iowa Wild-
88617Iowa Wild-Chicago Wolves-
90633Chicago Wolves-Charlotte Checkers-
92647Texas Stars-Chicago Wolves-
95668Chicago Wolves-Tucson Roadrunners-
96680Chicago Wolves-Abbotsford Canucks-
97686Providence Bruins-Chicago Wolves-
101712Springfield Thunderbirds-Chicago Wolves-
103724Chicago Wolves-San Diego Gulls-
106745Bakersfield Condors-Chicago Wolves-
108762Chicago Wolves-Milwaukee Admirals-
110776Stockton Heat-Chicago Wolves-
112794Chicago Wolves-Utica Comets-
114808Ontario Reign-Chicago Wolves-
116827Chicago Wolves-Ontario Reign-
118840Chicago Wolves-Rockford IceDogs-
119847Tucson Roadrunners-Chicago Wolves-
122867Chicago Wolves-Lehigh Valley Phantoms-
123878Colorado Eagles-Chicago Wolves-
126895Chicago Wolves-Providence Bruins-
128910Utica Comets-Chicago Wolves-
132932Chicago Wolves-Manitoba Moose-
133942Rochester Americans-Chicago Wolves-
136962Chicago Wolves-Henderson Silver Knights-
137975Milwaukee Admirals-Chicago Wolves-
1421001Chicago Wolves-Toronto Marlies-
1431006Coachella Valley Firebirds-Chicago Wolves-
1461031Chicago Wolves-Coachella Valley Firebirds-
1471039Abbotsford Canucks-Chicago Wolves-
1511065Rockford IceDogs-Chicago Wolves-
1531081Chicago Wolves-Stockton Heat-
1551097Rockford IceDogs-Chicago Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
1571112Chicago Wolves-Rochester Americans-
1581123Chicago Wolves-Bellerive Senators-
1601134Abbotsford Canucks-Chicago Wolves-
1631157Bridgeport Islanders-Chicago Wolves-
1661174Chicago Wolves-Stockton Heat-
1681184Chicago Wolves-Tucson Roadrunners-
1701197Bellerive Senators-Chicago Wolves-
1711204Chicago Wolves-Bakersfield Condors-
1741231Bellerive Senators-Chicago Wolves-
1761239Chicago Wolves-Bakersfield Condors-
1781257Chicago Wolves-Colorado Eagles-
1791267Manitoba Moose-Chicago Wolves-
1831286Chicago Wolves-Colorado Eagles-
1851303Manitoba Moose-Chicago Wolves-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance11,1355,342
Attendance PCT92.79%89.03%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
35 2746 - 91.54% 39,938$239,626$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,018,928$ 15,815,000$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 2,018,928$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,397,818$ 164 84,122$ 13,796,008$




Chicago Wolves Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Brendan Perlini926958127-66613814736219.06%59172918.791912317530392135.06%51.4700
2Andrew Agozzino923961100-114619418628013.93%64179519.52268900010052.33%21.1100
3Sheldon Dries83593594-288738126722.10%33105912.765271600003053.07%41.7700
4Frederik Gauthier82365389-911013318825214.29%84154118.806152156011123053.14%11.1500
5Sheldon Rempal92404787-8445113628014.29%54156016.9676133000032034.30%21.1200

Chicago Wolves Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Antoine Bibeau8484320.7298.0132364043215927966000
2Zachary Emond7963210.7467.7322890029511635705000

Chicago Wolves Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
48287101200309668-3594183101100168314-1464104000100141354-213203094948030010710695123257788257175246895351016332585220.16%25610459.38%5787145354.16%676127253.14%849155954.46%1818116118056591300639
51054001006059163200100413011422000001929-10116097157002723100280109789212871107718032721.88%331263.64%18616352.76%7115944.65%8918448.37%2191382198016279
Total Regular Season92137501300369727-35847113301200209344-1354524200100160383-22331369591960001341291051260588790380962755106358718132905920.34%28911659.86%6873161654.02%747143152.20%938174353.82%2038129920257401463719
Playoff
Total Playoff0000000000000000000000000000000000000000000000000000000%000%0000%000%000%000000

Chicago Wolves Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA